RC Gliders Lee-Soaring

Model glider pilots have recently found a new way of dynamic soaring in the lee of a hill. Normally, soaring is done on the windward side of a hill to take advantage of the up-draughts as the wind blows up and over the hill; the lee side of the hill is normally avoided because of down-draughts. However, it has been found that it is possible to maintain height and position in a circular flight path and achieve huge speeds, on the lee-side of a hill  when there is a marked shear boundary between the wind blowing over the top of the hill and a relatively still area below.

 Again the Rayleigh cycle of dynamic soaring is cited as the mechanism in use. It goes something like this: as the model flies upwind in the still air and climbs through the shear boundary into the fast moving air, ground speed is preserved and airspeed increases. The glider turns downwind and descends through the shear boundary, ground speed is preserved and airspeed increases. The circuit is completed in still air below the shear boundary with a little loss of speed and the cycle is repeated.

 So what is wrong with that? In this form of dynamic soaring both airspeed and ground-speed must increase but the theory says that airspeed will increase only if actual speed (ground-speed) does not increase. Also the effect has maximum effect if the glider penetrates the shear boundary on upwind or downwind headings. On more cross wind headings the effect is much reduced. In order for both airspeed and ground-speed to increase there has to a force acting in the direction of flight to achieve that acceleration. Also, if airspeed increases then drag increases. If drag increases there must be a force to balance drag, if only briefly. The wind gradient theory does not show such a force.

 As explained elsewhere, in albatross dynamic soaring, airspeed can be maintained in a windward turn but in this case the ‘windward’ turn is made in still air so that does not apply and there is no gain of energy. The wind is an obvious source of energy but where is the force that causes the acceleration? Also, when listening to the sound track of the videos of this kind of flying, you would expect that if the Rayleigh cycle is correct then there would be audible ‘double slap’ as the glider penetrates the shear boundary twice. What you actually hear is a ‘single slap’ at the highest point of the circle.

 I do not think that this is either wind-gradient or windward-turn dynamic soaring. I think it is more like a kind of transitory auto-rotation, the kind of thing that keeps the rotor of an auto-gyro or the vanes of a vertical-axis windmill turning. Such mechanisms have axles or rotor hubs to constrain the motion of the rotor and ensure a permanent high angle of attack. The glider in free-flight can only sustain a large angle of attack briefly.

                                          Figure 29

the kick1 This is how it works. The glider is circling with a steep angle of bank (figure 28) but with a small angle of attack and the lift and drag forces are resolved normally as in figure 29 a, which is a plan view with the glider in a steeply banked turn

 As the glider penetrates the shear boundary briefly at the cross-wind position the effect is to cause a sudden increase in angle of attack, which increases lift and drag but, more importantly, tilts the lift-drag resultant forward giving the glider a kick, like a pulse of thrust, in the direction of flight (figure 29 b). The wind is horizontal and the glider is in a steeply banked turn. This is similar to the resolution of forces which enables a helicopter rotor to continue spinning in auto-rotation. The pulse of thrust, the kick, increases the airspeed and ground-speed on every circuit, the circuit being completed in the still air below the shear boundary with a small loss of airspeed.

 It is similar to a kind of vertical axis wind turbine. Like a cup anemometer, it has a vertical axis and three arms, but with a vertical airfoil blade at the end of each arm instead of the cup. Like the cup anemometer, this device will also rotate regardless of the wind direction. Just imagine instead of three arms, a single arm and single airfoil and there is your glider in a steep turn sipping at the wind at the upwind peak of the orbit.

 Also, although these glider models are achieving very high ground-speeds, recorded by radar speed guns, it may be that they are generating and flying within, a rotating vortex in the otherwise stationary air in the lee of the hill. This would mean that the airspeed and (G loading) are not as high as the ground speed.

 This kind of high-speed, circling flight is not what albatrosses do. However, the albatross is thought to be able to soar upwind and the kick may be an explanation of how it does that.


New Banner